Block Coordinate Descent for Sparse NMF

نویسندگان

  • Vamsi K. Potluru
  • Sergey M. Plis
  • Jonathan Le Roux
  • Barak A. Pearlmutter
  • Vince D. Calhoun
  • Thomas P. Hayes
چکیده

Nonnegative matrix factorization (NMF) has become a ubiquitous tool for data analysis. An important variant is the sparse NMF problem which arises when we explicitly require the learnt features to be sparse. A natural measure of sparsity is the L0 norm, however its optimization is NP-hard. Mixed norms, such as L1/L2 measure, have been shown to model sparsity robustly, based on intuitive attributes that such measures need to satisfy. This is in contrast to computationally cheaper alternatives such as the plain L1 norm. However, present algorithms designed for optimizing the mixed norm L1/L2 are slow and other formulations for sparse NMF have been proposed such as those based on L1 and L0 norms. Our proposed algorithm allows us to solve the mixed norm sparsity constraints while not sacrificing computation time. We present experimental evidence on real-world datasets that shows our new algorithm performs an order of magnitude faster compared to the current state-of-theart solvers optimizing the mixed norm and is suitable for large-scale datasets. International Conference on Learning Representations (ICLR) This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. Copyright c ©Mitsubishi Electric Research Laboratories, Inc., 2013 201 Broadway, Cambridge, Massachusetts 02139

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonnegative matrix factorization for interactive topic modeling and document clustering

Nonnegative matrix factorization (NMF) approximates a nonnegative matrix by the product of two low-rank nonnegative matrices. Since it gives semantically meaningful result that is easily interpretable in clustering applications, NMF has been widely used as a clustering method especially for document data, and as a topic modeling method. We describe several fundamental facts of NMF and introduce...

متن کامل

Fast Parallel Randomized Algorithm for Nonnegative Matrix Factorization with KL Divergence for Large Sparse Datasets

Nonnegative Matrix Factorization (NMF) with Kullback-Leibler Divergence (NMF-KL) is one of the most significant NMF problems and equivalent to Probabilistic Latent Semantic Indexing (PLSI), which has been successfully applied in many applications. For sparse count data, a Poisson distribution and KL divergence provide sparse models and sparse representation, which describe the random variation ...

متن کامل

Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework

We review algorithms developed for nonnegativematrix factorization (NMF) and 1 nonnegative tensor factorization (NTF) from a unified view based on the block coordinate 2 descent (BCD) framework. NMF and NTF are low-rank approximation methods for matri3 ces and tensors in which the low-rank factors are constrained to have only nonnegative 4 elements. The nonnegativity constraints have been shown...

متن کامل

Randomized Sparse Block Kaczmarz as Randomized Dual Block-Coordinate Descent

We show that the Sparse Kaczmarz method is a particular instance of the coordinate gradient method applied to an unconstrained dual problem corresponding to a regularized `1-minimization problem subject to linear constraints. Based on this observation and recent theoretical work concerning the convergence analysis and corresponding convergence rates for the randomized block coordinate gradient ...

متن کامل

Fast Nonnegative Matrix Factorization: An Active-Set-Like Method and Comparisons

Nonnegative matrix factorization (NMF) is a dimension reduction method that has been widely used for numerous applications including text mining, computer vision, pattern discovery, and bioinformatics. A mathematical formulation for NMF appears as a non-convex optimization problem, and various types of algorithms have been devised to solve the problem. The alternating nonnegative least squares ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1301.3527  شماره 

صفحات  -

تاریخ انتشار 2013